
Martin Magill, Faisal Z. Qureshi, & Hendrick W. de Haan
Faculty of Science, University of Ontario Institute of Technology, Oshawa faculty.uoit.ca/dehaan/cNAB.LAB/

Neural Networks Trained to Solve Differential Equations
Learn General Representations

martinmagill.netlify.com

Overview Interpreting the networks

Quantifying layer specificity versus generality

The first layer learns coordinates

Layer-wise SVCCA

PCA/SVD PCA/SVD

Rotate to maximize
similarities

Out:

In: activation vectors of each layer.

Aligned bases

Similarities

#2:

#6: #9:

#5:

#3: #7:

#8:#4:

#1:

Family of problems

The horizontal position
of the source was varied
from 0 to 0.6.

Charge distribution Electric potential

Width: 20

Used 4-layer fully-connected tanh neural networks
to solve the boundary value problem (BVP)

where Ω is a square domain.

This models the electric potential of a localized
charge distribution on a square with grounded edges.

• Inputs: coordinates of a point (x,y).

• Output: estimated potential u(x,y).

• Loss: MSE of BVP equations.

• Left: Activation vectors of each neuron in a
network trained at x'=0.3, shown as functions
over the input domain.

• Note that it is difficult to interpret the
activation vectors directly.

• The components in the first layer
accentuate the input regions that are
important to both networks simultaneously.

• The fourth component, for instance,
highlights the top-left and bottom-right
corners.

• The functions in the last layer form a basis
that represents both outputs efficiently.

• In all layers, higher-order components
become more multimodal, like Fourier modes.

• Right: The same network after
layer-wise SVCCA with a second
network trained at x'=0.6.

• Components are sorted from top
to bottom by similarity scores.

• In machine vision, CNN layers can be visualized
as the features they learn to identify.

• Neural networks can learn the solutions to
differential equations.

• Question: Do the layers in these networks
encode useful information about the solution?

• Answer: Yes! For instance, the first layer
identifies important regions of the input domain.

• Bonus: The same representations are learned
reliably, even when the equations are modified.

• Left: The nine leading components in
the first layer of a network of width 192
trained at x'=0.6 after layer-wise SVCCA
with itself.

• Labels show similarity values and their
order when sorted by similarity.

• They act as coordinates over the input
domain. The contour lines are densest
where each coordinate is most sensitive.

• First row: These are simply rotations of
the two original coordinates, x and y.

• Second and third rows: These four,
together, show position relative to the
four corners of the domain.

• Fourth and fifth rows: These capture
distance to the four walls of the domain.

• For all sufficiently wide networks, the
leading components of the first layer are
mixtures of these features.

• This result is reproducible across
different random initializations.

• It is also general, in that it does not
depend on the x' of the two networks used
for layer-wise SVCCA.

• To validate our measure of specificity, we also
measured specificity using an existing approach
based on transfer learning tests (Yosinski et al. 2014,
Adv Neural Inf Process Syst. 3320–3328).

• We found good agreement between the measures,
and our method was orders of magnitude faster.

• Above: Matrices of ρ, the sum of the
SVCCA similarities, computed layer-
wise between networks trained from
different random seeds (between black
lines) and at different x' values.

• Below: From the matrices, we
extract the self-similarity ρself, the
similarity ρΔx'=0 across random seeds
at fixed x', and the similarity as a
function of x', ρΔx'.

• The intrinsic dimensionality converges at high widths,
as layers converge to finite-dimensional representations.

• Wide layers also have very high reproducibility across
different random initializations.

• The fourth layer has high specificity, as its functional
behaviour changes significantly when x' varies.

• The first layer has low specificity, because it learns a
general representation that works well for all x'.

• The second layer is also quite general, but the third layer
transitions from specific in narrow networks to general in
wide networks.

