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* In machine vision, CNN layers can be visualized
as the features they learn to identitfy.

e Neural networks can learn the solutions to
differential equations.

* Question: Do the layers in these networks
encode useful information about the solution?

« Answer: Yes! For instance, the first layer
identifies important regions of the input domain.
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Interpreting the networks

 Inputs: coordinates of a point (x,y).
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e Output: estimated potential u(x,y).
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 Loss: MSE of BVP equations.
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o Left: Activation vectors of each neuron in a
network trained at x'=0.3, shown as functions
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The first layer learns coordinates

e Left: The nine leading components in
the first layer of a network of width 192
trained at x'=0.6 after layer-wise SVCCA
with itself.

e Labels show similarity values and their
order when sorted by similarity.

over the input domain.

 Note that it is difficult to interpret the
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 They act as coordinates over the input
domain. The contour lines are densest
where each coordinate is most sensitive.

e First row: These are simply rotations of
the two original coordinates, x and y.

 Second and third rows: These four,
( together, show position relative to the
|

four cormers of the domain.

0.4  Fourth and fifth rows: These capture

i distance to the four walls of the domain.

e For all sufficiently wide networks, the

mixtures of these features.

Ivati t directly.
* Bonus: The same representations are learned ‘ ‘ activation vectors directly ,
reliably, even when the equations are modified.
' e Right: The same network after ' .
A ‘ layer-wise SVCCA with a second y
. network trained at x'=0.6. /
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The horizontal position
of the source was varied

from O to 0.6. Width: 20

Layer-wise SVCCA

In: activation vectors of each layer.
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Quantifying layer specificity versus generality

\ leading components of the first layer are

—

e This result is reproducible across
different random initializations.

e It is also general, in that it does not
depend on the x' of the two networks used
for layer-wise SVCCA.
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e Below: From the matrices, we
extract the self-similarity p., the
similarity p,,—o across random seeds
at fixed x', and the similarity as a
function of x', pa.

e Above: Matrices of p, the sum of the
SVCCA similarities, computed layer-
wise between networks trained from
different random seeds (between black
lines) and at different x' values.
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 The intrinsic dimensionality converges at high widths,
as layers converge to finite-dimensional representations.

 Wide layers also have very high reproducibility across
4! different random initializations.
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Fourth hidden layer  The fourth layer has high specificity, as its functional

behaviour changes significantly when x' varies.

 The first layer has low specificity, because it learns a
general representation that works well for all x'.

Null hypothesis

SVCCA similarity, p

 The second layer is also quite general, but the third layer
0.6 transitions from specific in narrow networks to general in
wide networks.

Network width Network width

e To validate our measure of specificity, we also
measured specificity using an existing approach
based on transfer learning tests (Yosinski et al. 2014,
Adv Neural Inf Process Syst. 3320-3328).

« We found good agreement between the measures,
and our method was orders of magnitude faster.
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