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In this work, we investigated whether a series of nanopores connected by channels can be used to separate
polymer mixtures by molecular size. We conducted multiscale coarse-grained simulations of semiflexible
polymers driven through such a device. Polymers were modelled as chains of beads near the nanopores
and as single particles in the bulk of the channels. Since polymers rarely escape back into the bulk of the
channels after coming sufficiently close to the nanopores, the more computationally expensive simulations
near the pores were decoupled from those in the bulk. The distribution of polymer positions after many
translocations was deduced mathematically from simulations across a single nanopore-channel pair, under
the reasonable assumption of identical and independent dynamics in each channel and each nanopore. Our
results reveal rich polymer dynamics in the the nanopore-channel device, and suggest that it can indeed
produce polymer separation. As expected, the mean time to translocate across a single nanopore increases
with chain length. Conversely, the mean time to cross the channels from one nanopore to the next decreases
with chain length, as smaller chains explore more of the channel volume between translocations. As such, the
time between translocations is a function of the length and width of the channels. Depending on the channel
dimensions, polymers are sorted by increasing length, decreasing length, or non-monotonically by length such
that polymers of an intermediate size emerge first.

I. INTRODUCTION

Nano- and microfluidic devices show great promise as
next-generation polymer separation technologies1–3. Po-
tential advantages over traditional separation techniques
include faster throughput, higher efficiency, miniaturiza-
tion and automation (as in lab-on-a-chip designs), and
the ability to deal with long polymer chains.
Nanopores, small holes in thin membranes whose diam-

eters and thicknesses are on the order of tens of nanome-
ters, are an important class of nanofluidic devices2. They
occur pervasively in biological systems, usually formed
by membrane-bound proteins, but can also be fabricated
synthetically in, for instance, thin films. They have at-
tracted much attention recently for technological appli-
cations, especially DNA sequencing4. However, since the
mean passage time of a polymer forced to translocate
through a nanopore is a function of its length, nanopores
could also be used for polymer separation. Unfortu-
nately, polymer separation using nanopores has proven
challenging in practice, as the translocation process is
highly variable5–7.
In this work, we study a device consisting of a series

of nanopores connected by channels. Our hypothesis is
that repeated translocation through multiple nanopores
in series should exhibit decreased overall variability rela-
tive to translocation through a single nanopore, so that
this nanopore-channel device could be used for polymer
separation. We explore channel dimensions from hun-
dreds to thousands of nanometers, and restrict our at-
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tention to cases where polymers can fit in the channels
without conformational restrictions. Polymer dynamics
in such channels are essentially the same as those in bulk
solution2,3. Since these channels have no polymer sepa-
ration power on their own, we consider this device to be
a minimalist implementation of multiple nanopores con-
nected in series. Nonetheless, as we will show, the overall
separation power of the nanopore-channel device still de-
pends greatly on polymer dynamics in the channels.

In order to study the polymer separation power of these
devices, we present a multiscale model of non-interacting
semiflexible homopolymers driven by an applied electric
field through a series of nanopores connected by cylindri-
cal channels. We analyse simulations of polymers travers-
ing a single channel and a single nanopore to infer the
average speed of polymers moving through the entire
nanopore-channel device. Our results indicate that poly-
mers can be sorted with good resolution using hundreds
to thousands of pores in series. Channel geometry plays
a fundamental role in determining the polymer dynam-
ics. For instance, depending on the channel dimensions,
the polymers can be sorted into increasing, decreasing,
or non-monotonic order by chain length.

We begin by reviewing some of the relevant literature
on polymer separation with micro- and nanofluidic de-
vices. Next, we introduce the details of our multiscale
model, which models the system at three levels of de-
tail. We then present our simulation results at each of
these three scales. We show that the nanopore geom-
etry used here is not especially optimized for polymer
separation. This is by design, to demonstrate that the
nanopore-channel device provides enhanced polymer sep-
aration even without carefully manufactured pores. We
also discuss the rich polymer dynamics revealed by simu-
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lations in the interior of the channels, far from the pores.
We derive a simple physical model that accounts for much
of the interplay between the polymers’ lengths and the
channels’ dimensions. We finish with results demonstrat-
ing the separation of polymers by length as they move
through many consecutive nanopores.

A. Background and Related Work

At a high level, the goal of polymer separation can be
stated as follows: given a mixture of polymers, group
polymers according to some property into distinct spa-
tial regions8. For linear polymers, the goal is usually to
separate them according to chain length. Unfortunately,
some polymers of interest (most notably DNA) are free-
draining, which means that chains of different lengths
move with the same drift velocity under an applied elec-
tric field in bulk solution3. As a result, devices for DNA
separation must introduce a length-dependence on poly-
mer motion.
Traditional approaches to polymer separation include

gel electrophoresis techniques (the physics of which was
reviewed, for instance, by Viovy et al.9) and capil-
lary electrophoresis methods (which were recently re-
viewed, for instance, by Harstad et al.10). Many nano-
and microfluidic devices have been considered for next-
generation polymer separation technologies. In a re-
view of this topic, Levy et al. classified these sorting ap-
proaches into entropic sorting devices, Brownian ratch-
ets, structured media, and free solution sorting devices2.
In a separate review, Dorfman et al. explored two classes
of sorting devices: post-arrays (which are a subset of
what Levy et al. called structured media devices) and
slit-well devices (which fall under what Levy et al. called
entropic sorting devices)3.
In entropic sorting devices, length-dependent mobility

is created by a series of entropic traps. For instance, this
has been accomplished by Han et al. with the slit-well
motif, which consists of a series of small nanoslits con-
nected by larger slits, or wells11,12. There is an entropic
barrier for polymers to enter the small nanoslits from the
wells, and the dynamics of this escape process depend on
chain length. Specifically, as they can enter the smaller
nanoslit by any point along their length, longer chains
make the transition more quickly than smaller chains.
This device is similar in spirit to the nanopore-channel
device considered here, with the nanopores playing the
role of the small nanoslits and the channels playing the
role of the wells. However, the devices are fundamen-
tally different because the nanoslit device is essentially
two-dimensional, whereas nanopores are essentially one-
dimensional. For instance, in the nanopore-channel de-
vice, chains of all length can only enter the nanopore at
a single position, so the primary dynamics of the slit-well
motif have no analogue. Another intrinsic difference be-
tween the two devices is in the electric field shape. The
electric field in the well of the slit-well devices is reduced

from that in the slits by a linear ratio of their respective
length scales (by conservation of flux). In contrast, the
electric field in the channels of the nanopore-channel de-
vice is reduced from that in the nanopores by the square
of the ratios of the two length scales. Thus the nanopore-
channel device intrinsically supports much larger field
gradients. Nonetheless, the systems do share some sim-
ilarities: as we will show, in both systems polymers can
exhibit the unusual behaviour of increasing mobility with
increasing chain length3.

As mentioned above, in addition to their use for
sequencing applications, nanopores have also previ-
ously been considered for polymer separation. Length-
dependent motion arises because longer polymers take
longer, on average, to translocate through a given
nanopore. For instance, Carson et al. and Bell et
al. demonstrated experimentally that the length of a
translocating DNA chain can be identified by its translo-
cation time5,6. Unfortunately, the use of nanopores for
polymer separation by length is limited by the intrin-
sic variability of the translocation process. For instance,
typical nanpores cannot identify the length of double-
stranded DNA (dsDNA) molecules with better resolu-
tion than roughly 1000 bp6. By carefully manufacturing
nanopores with diameters very close to 3 nm, Carson
et al. achieved improved resolutions on the order of 100
bp5. Briggs et al. also demonstrated resolution on the
order of 100 bp in nanofiltered nanopore devices, where
a nanoporous membrane pre-confines DNA molecules be-
fore translocation7. These innovations improve the sensi-
tivity of the translocation time to chain length by reduc-
ing the variability of the translocation process, but this
comes at the cost of additional manufacturing require-
ments.

In principle, a simple way of improving the resolution
of any nanopore-based filters would be to use many of
them in series. Repeated independent applications of a
stochastic filter n times should theoretically reduce the
net variability of the process by a factor of 1/

√
n. One

might therefore hope to simply study a single nanopore
in isolation, then extrapolate to determine the filtering
potential of n nanopores in series. However, as this
work will demonstrate, the precise fashion in which the
nanopores are connected is fundamental to the overall
polymer dynamics, and cannot be neglected.

To our knowledge, there have not been many previous
studies exploring the translocation of polymers through
multiple nanopores in series. Langecker et al. con-
ducted experiments with dsDNA in a micron-scale cavity
bounded by two nanopores13. They used 10 kbp dsDNA
and conducted time-of-flight measurements at a variety
of voltages. In contrast to the work presented here, those
experiments varied voltage but did not vary chain length.
Thus those experiments cannot be used directly to spec-
ulate about the separation power of nanopores in series.
Instead, they demonstrate that nanopores in series can
yield more detailed analysis of molecular properties than
single nanopores.
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II. MODEL AND METHODOLOGY

In this section, we will describe our multiscale model of
polymers in the nanopore-channel device, as well as our
simulation methodology. The system was modelled at
three scales, which will be referred to as the microscopic,
mesoscopic, and macroscopic scales in order from finest
to coarsest level of detail. Figure 1 summarizes the mod-
els used at each scale. At the largest scale (Figure 1(c)),
the system geometry consists of nanopores connected in
series by channels, with all pores and channels centered
on a common axis. The following subsections will de-
scribe the model at each scale in turn, and additional
details are available in the supplemental materials.

A. Microscopic Model

The microscopic model (Figure 1(a)) was used to cap-
ture the dynamics of the molecules near the nanopores.
This phase included capture from free solution into the
pore and translocation through the pore. This is the most
detailed scale in our model, as the polymer dynamics in
this region are both complicated and crucial to a proper
understanding of the device. The simulations utilized
a standard coarse-grained Langevin dynamics (CGLD)
polymer consisting of N beads14. This level of detail
has been used extensively to study polymer translocation
through nanopores15–26. Simulations were conducted us-
ing the ESPResSo software package on the SHARCNET
computing facilities27.
Polymers were constructed using N identical

monomers arranged linearly using finitely-extensible
nonlinear elastic (FENE) forces to bond monomers
and Weeks-Chandler-Anderson (WCA) forces to model
excluded volume14. The semiflexibility of the chain was
modelled using a harmonic potential on the angle formed
by any three consecutive monomers along the chain
backbone. A persistence length of Lp = σ was imposed,
where σ is the effective monomer diameter dictated by
the WCA interaction. Length scales throughout the
remainder of this paper will be expressed in terms of this
effective chain width σ. This choice was motivated by
double-stranded DNA molecules, which have an effective
width of a few nanometers (larger than the steric width
≈ 2.5 nm) and a persistence length of roughly 30 − 50
nm28–31. As discussed in the supplemental material, the
aspect ratio of the model polymer was somewhat smaller
than that of real DNA, which enabled longer polymers
to be simulated.
WCA forces were also used to apply purely repulsive

interactions between monomers and the nanopore walls.
An effective nanopore radius of 0.8 was used. This radius
was selected as it only enabled polymers to traverse the
pore by an end, i.e. polymers could not enter the pore in
a folded configuration. This simplified the current anal-
ysis, but future work will explore the impact of folding
dynamics.

The thermal motion of the polymer was modelled via
Langevin dynamics. The thermostat used a thermal en-
ergy of kT = 1 and a friction coefficient of γ = 1 for
each monomer, and the monomer mass was m = 1 as
well. Translocation was driven by an electric force field.
The shape of the electric field in the microscopic region
was approximated by the analytic solution for the electric
field of a nanopore in an infinite unbounded domain32.
This is a good approximation when the channel dimen-
sions are much larger than the pore radius, which is the
case for all simulations in this paper. The advantage of
this approximation is that the results of the microscopic
simulations become independent of the channel geome-
try, enormously improving the computational efficiency
of the model. The magnitude of the electric field was
scaled to match the Péclet number of the simulations to
relevant experimental conditions for dsDNA transloca-
tion, as discussed in the supplemental material33.

At the start of the microscopic simulations, polymers
were initialized in an equilibrated conformation a dis-
tance rcap = N/4 from the nanopore. This distance
was chosen to balance two effects. We found that this
rcap was far enough from the pore that the electric field
strength was not strong enough to significantly deform
the polymer conformations from equilibrium as they dif-
fused around that distance. Conversely, this rcap was
also close enough to the pore that the electric field was
strong enough that polymers were unlikely to diffuse very
far from the pore before translocating. See the supple-
mental material for more details.

The primary measurement in the microscopic model
was the microscopic time, defined as the time after the
release of a polymer (i.e. after equilibration) until all of its
monomers were located on the trans side of the nanopore.
If polymers ever moved far enough away from the pore
that the closest monomer to the pore was farther than
the cut-off radius of N from the pore, then the event was
considered a failure. Failed events were restarted, so that
the total number of successful translocations measured at
each chain length was 2000.

B. Mesoscopic Model

The mesoscopic model (Figure 1(b)) was used to study
the dynamics farther from the nanopores, in the bulk of
the channels. In this region, the electric field gradient
was small over the length scale of the polymer, so that
it could not significantly deform the polymer conforma-
tions. In other words, these dynamics were dominated
by the translational motion of the center of mass. As
such, in the mesoscopic model each polymer was repre-
sented by a single effective particle, and was simulated
using coarse-grained Brownian dynamics (CGBD)14.

The mesoscopic CGBD simulations were made com-
patible with the microscopic CGLD simulation condi-
tions. The diffusion coefficients of the mesoscopic par-
ticles were set to 1/N , corresponding to the center of
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Macroscopic Scale

Simulations are used to measure the mean and standard deviation 

of the microscopic and mesoscopic times for di�erent chain lengths

The microscopic and mesoscopic results are combined to obtain the

position distributions of polymers as they cross many nanopores

(c)

FIG. 1. Schematics illustrating the three modelling scales used for this system. (a) In the microscopic model, WCA and FENE
interactions were used to construct a linear homopolymer of N beads, and harmonic angular potentials were used to implement
semiflexibility. (b) At the mesoscopic scale, the entire polymer was represented by a single Brownian particle. Simulations
were initialized with particles at the inlet pore of a channel of radius Rch and length Zch, and terminated when particles were
absorbed near the outgoing pore. (c) At the macroscopic scale, the net motion of polymers through the nanopore-channel
device was inferred by treating each of the consecutive nanopore-channel pairs as identical and independent subunits of the
device.

mass diffusion coefficients predicted by the Rouse model
for polymers of length N in the microscopic model. The
CGBD thermostat and force magnitudes were set as in
the microscopic model, with each polymer experiencing
a net friction coefficient equal to N times the monomer
γ, in accordance with the Rouse model. Similarly, each
CGBD chain experienced a net force equal to N times
the force that a single monomer would feel. As a result,
large chains diffused more slowly than smaller chains, but
all chains exhibited identical free solution electrophoretic
drift velocities.

The electric field in the mesoscopic model was obtained
by solving Laplace’s equation in cylindrical coordinates
using the finite element method with the FEniCS soft-

ware package34. The channel was modelled as a cylin-
der of length Zch and radius Rch (see Figure 1(b)). The
mesoscopic simulations were initialized with particles in
the inlet nanopore of a channel, and proceeded until the
particles contacted the hemisphere of radius rcap = N/4
surrounding the outgoing nanopore. We call the first
passage time for particles to reach this absorbing hemi-
spherical boundary the mesoscopic time.

As stated above, the starting radius of the microscopic
model is included in the mesoscopic model as an absorb-
ing boundary. As argued in the supplemental material,
this is valid because it was possible to choose a set of
capture radii rcap = N/4 such that the failure rate was
simultaneously small for all chain lengths. However, the
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failure rate is counted by the number of events that dif-
fuse to a distance of 4rcap from the pore. Within that dis-
tance, the microscopic model neglects the channel walls,
which is a limitation of the current model. Nevertheless,
the computational benefit of neglecting the channel walls
in the microscopic model is enormous, as it enables the
same microscopic results to be used across many channel
geometries. To justify the use of this simplifying assump-
tion, the mesoscopic model was only studied for polymer
chains that satisfied the condition that

min(Rch, Zch) > rcap +RG, (1)

where RG is the radius of gyration and was approximated
with the wormlike chain model,

RG ≈

[
LpN

3
− L2

p +
2L3

p

N

(
1− Lp

N

(
1− e

− N
Lp

))]1/2
,

(2)

where N is the nominal contour length and Lp = 10 is
the persistence length35. This restriction reduces the in-
fluence of omitting the walls from the microscopic model,
since it ensures that the walls are far from the pore, where
the electric field is weak. Furthermore, it also ensures
that the polymers have RG much smaller than the di-
mensions of the channel, which is another assumption of
the model.

C. Macroscopic Model

The transport of polymers across multiple channels
was captured in the macroscopic model. The behaviour
of polymers at this scale was solved analytically on the as-
sumption that their dynamics in distinct nanopores and
channels were independent and identical. When this is
the case, the macroscopic dynamics are entirely deter-
mined by the micro- and mesoscopic dynamics in any
given channel.
Since the boundary between the microscopic and meso-

scopic domains was chosen such that the rate of trans-
port from the microscopic zone back into the mesoscopic
region was negligible, the time to cross a given nanochan-
nel, tmacro, can be approximately modelled as

tmacro = tmicro + tmeso, (3)

where tmicro and tmeso, the times to cross the respec-
tive subdomains, are statistically independent. Thus the
probability density function of tmacro is the convolution
of the other two variables’, i.e.

ρ(tmacro) = ρ(tmicro) ∗ ρ(tmeso). (4)

Similarly, the probability density function of the time at
which the polymer will enter the kth channel for the first
time, t(k), is given by

ρ(t(k)) = ρ(tmacro) ∗ ρ(tmacro) ∗ . . . ∗ ρ(tmacro)︸ ︷︷ ︸
k times

. (5)

Equation 5 for the distribution of t(k) can be computed
directly from the distributions of tmicro and tmeso. How-
ever, by the central limit theorem, ρ(t(k)) will converge
in the limit of large k to

ρ(t(k)) ≈ N (kµmacro, kσ
2
macro), (6)

where µmacro and σ2
macro are the mean and variance, re-

spectively, of tmacro, and N (µ, σ2) denotes a normal dis-
tribution. This approach treats k as a continuous ran-
dom variable when it is in fact discrete; this is justified
for large values of k.

From this, we derive the distribution of polymer posi-
tions as a function of channel number k. The probability
of a polymer being in channel k′ ≥ k at time t is given
by

p(k′ ≥ k) = p(t(k0) ≤ t) =

∫ t

0

p(t(k) = t′)dt′ (7)

≈ 1

2

(
1 + erf

(
t− kµmacro√

2kσ2
macro

))
(8)

when k is large enough to apply the central limit theorem
to ρ(t(k)). This is the cumulative distribution of poly-
mer position in the macroscopic system. To obtain the
corresponding probability density function, we take the
derivative, and see that the position distribution over k
at time t is

ρ(k; t) ≈ −∂p(k′ ≥ k)

∂k
(9)

=
t+ kµmacro√
8πk3σ2

macro

exp

(
− (t− kµmacro)

2

2kσ2
macro

)
. (10)

Finally, we can apply the central limit theorem again to
find that the position distribution when t is large is given
by

lim
t→∞

ρ(k; t) = N
(
σ2 + 2µt

2µ2
,
5σ4

4µ4
+

σ2t

µ3

)
(11)

= N

(
t

µ
+

1

2

(
σ

µ

)2

,

(
σ

µ

)2
t

µ
+

5

4

(
σ

µ

)4
)
,

(12)

where µ and σ are the mean and variance of tmacro, but
the subscripts have been omitted for ease of reading. The
mean and variance of ρ(k; t) were calculated using Math-
ematica 11.136.

Equation 12 can be used to compute the position dis-
tribution’s coefficient of variation CV , which is its stan-
dard deviation divided by its mean. This describes the
relative width of the distribution. In the limit of large t,
the coefficient of variation will approach

lim
t→∞

CV =
σ
√
µ

1√
t
∝ 1√

t
. (13)
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Thus, although the position distributions become arbi-
trarily broad at large times, they become progressively
narrower relative to the mean displacement.
Furthermore, when t is large, the mean polymer po-

sition given by Equation 12 will be roughly t/µmacro,
and so the mean polymer speeds through the nanopore-
channel device will approach 1/µmacro. Since µmacro =
µmicro+µmeso by linearity, the mean position of polymers
after many translocations depends equally on the micro-
scopic and mesoscopic dynamics. The same conclusion
applies to the variance of the position distribution. In
other words, one cannot consider the filtering effect of
a series of nanopores without also considering the exact
process by which polymers are fed from one nanopore
into the next. As will be shown below, the mesoscopic
dynamics are quite rich, and can in fact be more impor-
tant than the microscopic dynamics.

III. SIMULATION RESULTS

In this section, we present the results of our simulations
at the microscopic, mesoscopic, and macroscopic scales,
in that order.

A. Results at the Microscopic Scale

The microscopic simulations were conducted for chains
of length N = 10, 20, 50, 75, 100, 150, and 200. Fig-
ures 2(a) and 2(b) show the mean and variance, respec-
tively, of the microscopic time. Recall that the micro-
scopic time includes both the translocation time, which
is commonly studied, as well as the capture time, which
is the time for the polymer to enter the nanopore after
the start of simulation. The capture process has often
been neglected in the literature, although recent work has
shown that it can radically alter the subsequent translo-
cation process26.
Figures 2(a) and 2(b) demonstrate that the mean and

variance of the microscopic time increase monotonically
with chain length over the range studied here. Although
our results do not suggest that the mean and variance
of microscopic time are related to the chain length N by
power laws, it is still interesting to consider the approx-
imate scaling of these quantities with N . Linear regres-
sion between the logarithms of the respective quantities
yields:

µmicro ≈ 0.98N2.09 (14)

σ2
micro ≈ 2.87N4.01. (15)

Simulation studies measuring the scaling of just the mean
translocation time with N under conditions similar to
those used here have generally reported exponents in the
range of 1.2 to 1.616–26. Conversely, the mean micro-
scopic time measured here increases scales with N to an
exponent of roughly 2.09. The fact that the microscopic

time contains the capture time in addition to the translo-
cation time is likely a major factor in this discrepancy.
In fact, the capture radius rcap = N/4 was increased
in proportion to chain length, further complicating a di-
rect comparison between microscopic time and translo-
cation time. Actually, given these significant differences
between the two quantities, it is remarkable that their
scaling with N is so similar.

It is also interesting to consider the intrinsic polymer
separation power of the nanopores studied here. Fig-
ure 2(c) contains violin plots of the microscopic times,
from which microscopic time distributions can be com-
pared directly between different values of N . It is clear
from Figure 2(c) that the microscopic time distributions
are heavy-tailed at every chain length, and that there
is a significant amount of overlap between distributions
for different chain lengths. Thus the current nanopore
setup does not appear to be optimized for separation ap-
plications. We chose such a nanopore because the goal of
the present work is to demonstrate that even nanopores
that clearly could not be used to separate polymers in
a single pass can successfully separate polymers when
connected in series. Of course, nanopore-channel devices
constructed using nanopores with superior length resolu-
tion, like those demonstrated by Carson et al. or Briggs
et al., would be expected to achieve even better polymer
separation5,7.

B. Results at the Mesoscopic Scale

Figure 3(a) shows the mean mesoscopic time for the
same range of chain lengths N as used in the micro-
scopic model, as well as for N = 300, all for various
combinations of the channel dimensions (Rch, Zch). Also
shown is the mean microscopic time, for comparison.
Mesoscopic simulations were run for every combination
of Rch and Zch both in {30, 45, 60, 75, 90, 150, 300}; and
for every combination of Zch in {500, 1000} and Rch in
{50, 100, 500}. The channel lengths, Zch, are shown by
line color; different lines of the same color correspond to
different channel radii, Rch, such that the mean tmeso in-
creases monotonically with Rch in all cases. Only choices
of (N,Rch, Zch) that satisfy the restriction of Equation 1
were studied.

Some dependence of the mean tmeso on chain length is
apparent: in all cases, longer chains cross the mesoscopic
region somewhat faster than shorter chains. However,
the extent of this effect depends greatly on the chan-
nel dimensions. In particular, mesoscopic time is only
comparable to microscopic time when the channel vol-
ume is small. In large channels, mesoscopic time is much
larger than microscopic time; furthermore, it changes
very little with chain length. This suggests that connect-
ing nanopores in series with large gaps of bulk solution
between them will not lead to any polymer separation,
because the thermal motion between subsequent pores
will overwhelm the length sensitivity introduced by the
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FIG. 2. Results of the microscopic simulations. (a) The mean
of the microscopic time, tmicro, as a function of chain length.
Error bars of one standard error are much smaller than the
marker size. (b) The variance of tmicro as a function of chain
length. (c) Violin plots showing distributions of tmicro as a
function of chain length. The markers indicate the mean of
each distribution.
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FIG. 3. In all three plots, line color indicates channel length
Zch. Different lines of the same color correspond to different
channel radii Rch such that the mean of the mesoscopic time,
tmeso, always increases monotonically with Rch. (a) Mean
tmeso for a range of chain lengths in channels of various di-
mensions (Rch, Zch). The dashed line shows the microscopic
time. (b) Mean tmeso normalized by mesoscopic volume for
a range of chain lengths in channels of various dimensions.
(c) Mean tmeso normalized by mesoscopic volume shown as a
function of the normalized chain length N/N∗ (discussed in
the text) in channels of various dimensions.
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(a) (b)

r

z

FIG. 4. Heatmaps of g0 (see text) comparing two mesoscopic
simulations in the same nanochannel geometry of (Rch, Zch) =
(30, 30) (a) for N = 10, and (b) for N = 50. Brightness indi-
cates the average residence time of polymers in each region of
the channel before reaching the absorbing boundaries (shown
in white). Longer chains spend less time far from the axis of
the channel.

pores.
Some of the mesoscopic dynamics can be understood

by considering particle trajectories. Figure 4 illustrates
two typical mesoscopic simulations. The heatmaps show
numerical measurements of the time-integrated position
probability density throughout the channel (in cylindrical
coordinates). These distributions, which will be referred
to as g0, show the average residence time of polymers
in each region of the channel before absorption near the
exit nanopore. The integral of g0 over the channel vol-
ume equals the mean mesoscopic time37. Figure 4 high-
lights the most important influence of chain length N
on dynamics in the mesoscopic simulations. The plot
for N = 10 shows a g0 distribution that is nearly uni-
form over the entire channel, illustrating that these short
chains typically diffuse throughout the entire channel be-
fore being captured. Conversely, the longer chains with
N = 50 typically drift axially into the capture radius
without diffusing very far in the radial direction. As a
result, the average residence time g0 decays rapidly to-
wards zero away from the channel axis.
Nearly-uniform g0 distributions, like the one in Fig-

ure 4(a), are typical when the channel volume is large or
the polymer chain length is small. We will refer to such
conditions as the diffusive regime. Since tmeso is the vol-
ume integral of g0, it follows that normalizing Figure 3(a)
by channel volume might account for some of the depen-
dence of tmeso on channel geometry. Figure 3(b) shows
this by plotting the following:

tmeso

Vmeso
=

tmeso

πR2
chZch − 1

2
4
3πr

3
cap

. (16)

As expected, tmeso/Vmeso is nearly independent of N ,
Rch, and Zch in the diffusive regime.
The remaining mesoscopic dynamics arise for chains

that are long enough to drift axially into the capture ra-
dius without first diffusing throughout the channel vol-
ume (as in Figure 4(b)). We will call such conditions

the driven regime. We can estimate the chain length at
which the dynamics transition between the diffusive and
driven regimes by comparing the characteristic timescales
of axial drift and radial diffusion.

The characteristic timescale on which particles drift
axially across the channel is

τdrift,z ∼ Zch − rcap
vdrift,z

, (17)

where vdrift,z, the characteristic axial drift velocity, is
roughly

vdrift,z ∼ (NF c
z )(γ/N) = F c

z γ, (18)

where F c
z is the characteristic axial force in the bulk of

the channel. The characteristic force in the bulk of the
channel can be expressed as

F c
z ≈ F ∗

p

(
rp
Rch

)2

, (19)

where F ∗
p ≈ 5.19 is the average axial force in the pore

(after tuning the Péclet number; see the supplemental
material), and rp is the radius of the pore. Altogether,
then, the characteristic timescale for drifting across the
channel is

τdrift,z ∼
Zch − N

4

γF ∗
p

(
Rch

rp

)2

, (20)

using rcap = N/4.
The characteristic timescale on which particles diffuse

radially is

τdiff,r ∼ R2
ch

D
=

R2
ch

kBT
γN

=
NγR2

ch

kBT
, (21)

Setting this equal to the characteristic drift time yields

N∗ = Zch

/(
1

4
+

γ2F ∗
p r

2
p

kBT

)
≈ Zch

3.57
. (22)

It is interesting to note that this estimate of N∗ does not
depend on Rch. This fortuitous result arises because the
magnitude of the axial electric field in the bulk of the
channel decreases with Rch with the same scaling as the
radial diffusion time.

In the same way that normalizing time by Vmeso ac-
counted for most of the mesoscopic dynamics in the dif-
fusive regime, the dynamics in the driven regime can be
accounted for by normalizing the chain lengths byN∗. As
shown in Figure 3(c), plotting tmeso/Vmeso against N/N∗

produces nearly the same curve for all channel geometries
currently under consideration. In other words, the mean
mesoscopic time is, to a reasonably good approximation,
a function of the channel volume and N∗.

Overall, Figure 3 clearly demonstrates that tmeso gen-
erally decreases monotonically with N . This is in direct
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contrast to tmicro, which increases monotonically with N .
In the next section, we will show that the interplay be-
tween these trends can be exploited to sort polymers into
increasing, decreasing, or non-monotonic functions of N ,
depending on the relative magnitudes of tmicro and tmeso.
The standard deviation of the mesoscopic time, σmeso,

also plays an important role in ultimately understanding
the macroscopic dynamics of the device. Unfortunately,
it was not possible to find a simple characterization of
σmeso comparable to that obtained above for µmeso. To
some extent, larger channels produce larger standard de-
viations. The details are more complicated than this,
and are shown in the supplemental information. Detailed
characterization is left to future work, as the purpose of
the present work is primarily to show that the nanopore-
channel device can indeed sort polymers under reasonable
experimental conditions.

C. Results at the Macroscopic Scale

Finally, we will combine the results of the previous
two sections to compute the dynamics of polymers at the
macroscopic scale, after they have crossed many consec-
utive pores in the nanopore-channel device. In partic-
ular, this section will show results with three choices of
the channel dimensions, which cause polymers to become
sorted into increasing, decreasing, and non-monotonic or-
ders by length, respectively. Furthermore, we will discuss
some of the general qualitative trends that are suggested
by our analysis.

1. Sorting into Monotonically Increasing Order of Length

Recall that the microscopic time always increases with
chain length N , whereas the mesoscopic time always de-
creases with N . To produce sorting in increasing order
of length, then, the geometry must be chosen so that
tmicro ≫ tmeso. As summarized in Figure 3, the mean
tmeso can be made smaller at all chain lengths by reduc-
ing channel volume. Conversely, decreasing the channel
length Zch accentuates the decrease of the mean tmeso

with N , which is counterproductive in the pursuit of in-
creasing sorting. Thus to produce increasing sorting one
must choose a channel with a small volume but a large
Zch; therefore, Rch must be small.
Figures 5(a) and (d) show results at the macroscopic

scale for a device with (Rch, Zch) = (30, 90). Figure 5(a)
shows the time evolution of the approximated means and
standard deviations of the polymer position distributions
over the channel number k. Specifically, these are ob-
tained by combining the results of the microscopic and
mesoscopic simulations at each value of N with Equa-
tion 12, which is valid for large k. The inset of Fig-
ure 5(a) shows 1/µmacro as a function of N , which we
previously argued is the average polymer speed in the
long-time limit. Conversely, Figure 5(d) shows the de-

tailed position distributions for each chain length, com-
puted using Equation 10, after 40 million units of simula-
tion time. These results demonstrate increasing sorting
by chain length N over this range of chain lengths.

Figure 5(a) shows that good separation occurs after a
very large number of channels. In practice, it is likely de-
sirable from a manufacturing point of view to minimize
the number of requisite channels. For increasing sorting,
this can be accomplished by increasing the magnitude of
tmicro. Future work will explore options for accomplish-
ing this, such as by using a nanopore with an internal
cavity. As shown in previous work, when the cavity size
is slightly smaller than RG, it acts as an entropic trap,
greatly increasing the translocation time38.

2. Sorting into Monotonically Decreasing Order of Length

Next, we will demonstrate decreasing sorting by
length. In this case, in contrast to the previous section,
the geometry must be chosen so that tmicro ≪ tmeso. This
is accomplished by making the channel volume large.
However, as Zch increases, the dependence of tmeso on
N becomes less pronounced, which reduces the separa-
tion power of the device. Thus decreasing sorting occurs
when the volume is large and Zch is small, in direct con-
trast to increasing sorting.

Figures 5(c) and (f) demonstrate decreasing sorting in
a channel with (Rch, Zch) = (90, 45). Good separation
is achieved with far fewer channels than for increasing
sorting. This can be understood as follows. Sorting into
decreasing order of length relies on the dependence of
tmeso on N . As shown in Figure 3(c), increasing Rch

increases the mean mesoscopic time without significantly
changing the dependence of tmeso on N . As a result,
the difference in tmeso between short and long chains can
be made large by increasing Rch, increasing the sorting
power per channel.

On the other hand, increasing Rch too much compro-
mises the filtering effect, as it broadens the position dis-
tributions. This broadening arises because in very wide,
short channels, most of the channel volume is far from
the axis, where the electric field is weak. Polymers that
diffuse away from the axis before crossing the length of
the channel axially remain trapped in the channel for
a long time. Conversely, since the channel is also short,
polymers will occasionally drift axially straight from pore
to pore without first diffusing far from the channel axis.
As a result, the spread in mesoscopic times is very large,
which leads to a broadening of the macroscopic position
distributions.

3. Sorting into Non-Monotonic Order of Length

The strictly increasing or decreasing sorting cases are
extreme presentations of the nanopore-nanochannel de-
vice. In general, the device will sort polymers into a non-
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FIG. 5. Results of the simulations at the macroscopic scale. Lines are labeled and colored by chain length N . (a), (b), and
(c) show means and standard deviations of polymer positions over channel number k as a function of time, whereas (d), (e),
(f) shows the complete polymer position distributions over k at fixed moments in time. The insets in (a), (b), and (c) show
the (rescaled) average polymer speeds at large time, 106/µmacro, against chain length N . Note that µmacro denotes the mean
macroscopic time. (a) and (d) demonstrate sorting into an increasing order of chain length in a long and narrow geometry, with
(Rch, Zch) = (30, 90); (b) and (e) demonstrate sorting into a non-monotonic order of length in a long and wide geometry, with
(Rch, Zch) = (90, 75); and (c) and (f) demonstrate sorting into a decreasing order of chain length in a short and wide geometry,
with (Rch, Zch) = (90, 45).

monotonic order by length because typically tmicro ≪
tmeso for short chains, whereas tmeso ≪ tmicro for suf-
ficiently long chains. Following the reasoning of the
previous two sections, then, short chains will be sorted
into decreasing order of length, and long chains will be
sorted into increasing order of length. Specifically, chains
of some intermediate length will traverse the nanopore-
channel device more quickly than both shorter and longer
chains.

Figures 5(b) and (e) demonstrate this non-monotonic
sorting in a channel with (Rch, Zch) = (90, 75). In this
configuration, the chains with N = 150 move faster
than all the other chains lengths. This type of be-
haviour is ideal for applications where a specific popu-
lation of chains must be isolated from both longer and
shorter chains. Conversely, the population of chains
with N = 200 was not separated from the chains with
N ≈ 100. This is inevitable in a situation where speed is
a non-monotonic function of N . Nonetheless, this ex-
ample demonstrates that good separation can still be
achieved among the chains that are smaller than the
fastest chain length (e.g. N = 50 from N = 75, in this
case), and also among chains that are longer than the

fastest chain length (e.g. N = 150 from N = 200, in this
case). In fact, among these two populations, good sep-
aration is achieved in this example using fewer channels
than required in either of the previous two examples. In
this sense, the device producing non-monotonic sorting
demonstrated better separation power per nanopore than
those producing monotonic sorting.

IV. CONCLUSIONS

We have demonstrated that polymers can be sorted
by length using a series of nanopores connected by chan-
nels. Good length separation was observed despite the
relatively poor length sensitivity of the specific nanopore
geometry studied here.

Our results clearly indicate that the polymer dynam-
ics in the channels cannot be neglected, even though the
channels have no intrinsic separation power in the ab-
sence of the nanopores. In fact, whereas ignoring the
channels (for instance, by assuming tmacro consists of
only translocation time) would lead one to expect sort-
ing into increasing order of chain length (since translo-
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cation time increases with chain length), the nanopore-
channel device can produce increasing, decreasing, or
non-monotonic sorting orders, depending on the channel
dimensions. Furthermore, we showed that the separation
power per nanopore can actually be greater in devices
that sort into non-monotonic and decreasing orders.
Finally, it is interesting to contrast the dynamics of

the nanopore-channel devices studied here and the slit-
well devices studied extensively in the literature3. As
pointed out above, the devices differ at a fundamental
level because the slit-well device has one completely un-
confined dimension, whereas the nanopore-channel de-
vice has none. Nonetheless, we recover the counter-
intuitive result that longer polymers can traverse the
nanopore-channel device more quickly than smaller poly-
mers.

SUPPLEMENTARY MATERIAL

See supplementary material for additional details con-
cerning the model and simulation implementations.
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